Tight closure and linkage classes in Gorenstein rings
نویسندگان
چکیده
منابع مشابه
Tight Closure in Graded Rings
This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...
متن کاملTight Closure in Non–equidimensional Rings
Throughout our discussion, all rings are commutative, Noetherian and have an identity element. The notion of the tight closure of an ideal was developed by M. Hochster and C. Huneke in [HH1] and has yielded many elegant and powerful results in commutative algebra. The theory leads to the notion of F–rational rings, defined by R. Fedder and K.-i. Watanabe as rings in which parameter ideals are t...
متن کاملTight Closure of Finite Length Modules in Graded Rings
In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...
متن کاملPurity and Gorenstein Filtered Rings
In this paper, we discuss on the existence of filtrations of modules having good properties. In particular, we focus on filtered homomorphisms called strict, and show that there exists a filtration which makes a filtered homomorphism a strict filtered homomorphism. Moreover, by using this result, we study purity for filtered modules over a Gorenstein filtered ring.
متن کاملHamiltonian Tournaments and Gorenstein Rings
Let Gn be the complete graph on the vertex set [n] = {1, 2, . . . , n} and ω an orientation of Gn , i.e., ω is an assignment of a direction i → j of each edge {i, j} of Gn . Let eq denote the qth unit coordinate vector of Rn . Write P(Gn ;ω) ⊂ R n for the convex hull of the (n 2 ) points ei − e j , where i → j is the direction of the edge {i, j} in the orientation ω. It will be proved that, for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2003
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-003-0527-x